Machine learning approach to pattern recognition in nuclear dynamics from the <i>ab initio</i> symmetry-adapted no-core shell model

نویسندگان

چکیده

A novel machine learning approach is used to provide further insight into atomic nuclei and detect orderly patterns amidst a vast data of large-scale calculations. The method utilizes neural network that trained on ab initio results from the symmetry-adapted no-core shell model (SA-NCSM) for light nuclei. We show SA-NCSM, which expands applications up medium-mass by using dominant symmetries nuclear dynamics, can reach heavier when coupled with approach. In particular, we find probability amplitudes $s$-and $p$-shell wave functions not only predicts configurations but in addition, tested $^{20}$Ne ground state, it accurately reproduces distribution. nonnegligible predicted an important input SA-NCSM reducing ultra-large spaces manageable sizes be, turn, utilized calculations obtain accurate observables. capable describing deformation track shape evolution along $^{20-42}$Mg isotopic chain, suggesting shape-coexistence more pronounced toward very neutron-rich isotopes. first descriptions structure $^{24}$Si $^{40}$Mg interest x-ray burst nucleosynthesis, even extremely heavy such as $^{166,168}$Er $^{236}$U, build upon principles considerations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

from linguistics to literature: a linguistic approach to the study of linguistic deviations in the turkish divan of shahriar

chapter i provides an overview of structural linguistics and touches upon the saussurean dichotomies with the final goal of exploring their relevance to the stylistic studies of literature. to provide evidence for the singificance of the study, chapter ii deals with the controversial issue of linguistics and literature, and presents opposing views which, at the same time, have been central to t...

15 صفحه اول

Mixed Symmetry Nuclear Shell Model

A mixed-symmetry nuclear shell-model scheme for carrying out calculations in regimes where there is a competition between two or more modes is proposed. A one-dimensional toy model is used to demonstrate the concept. The theory is then applied to 24Mg and 44T i. For lower pf -shell nuclei such as 44−48T i and 48Cr there is strong SU(3) symmetry breaking due to the spin-orbit interaction. Howeve...

متن کامل

the aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame

رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...

Shortcuts to Nuclear Structure: Lessons in Hartree-fock, Rpa, and the No-core Shell Model

While the no-core shell model is a state-of-the-art microscopic approach to low-energy nuclear structure, its intense computational requirements lead us to consider timehonored approximations such as the Hartree-Fock (HF) approximation and the random phase approximation (RPA). We review RPA and point out some common misunderstandings, then apply HF+RPA to the no-core shell model. Here the main ...

متن کامل

Machine Learning Pattern Recognition

Introduction These lecture notes were written to provide you with a handy reference to the material that was presented in the Machine Learning: Pattern Recognition course. It is not meant to replace the book of the course [Bishop, 2007], rather, it is meant to illustrate topics that may seem a bit dry or emphasise subjects that are deemed important to this class. It will often repeat what was s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review C

سال: 2022

ISSN: ['2470-0002', '2469-9985', '2469-9993']

DOI: https://doi.org/10.1103/physrevc.105.034306